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Abstract. Quasiperiodic, planar Ising models with ferromagnetic nearest-neighbour interac-
tions should show the same universal critical behaviour as the classical Ising model on the
square lattice. We use the eightfold symmetric Ammann–Beenker tiling to investigate this and
employ the distribution of the Lee–Yang and the temperature zeros of the partition function in
the complex plane. Our results support, as expected, the existence of an Onsager-type phase
transition, i.e. a second-order transition with critical exponentsα = 0, β = 1

8 andδ = 15.

1. Introduction

The Ising model is among the best understood models of statistical mechanics. Nevertheless,
despite Onsager’s spectacular solution of the field-free Ising model on the two-dimensional
(2D) square lattice, exact solutions on other graphs are very rare and, especially if they are
aperiodic, restricted to very special cases, see [4, 12] and references therein. Consequently,
one needs other methods for an approach to the critical behaviour of the Ising model on
quasiperiodic tilings. One such technique can be developed from what was proposed in
1952 by Lee and Yang [17, 22]. They investigated the zeros of the partition function in the
complex field variable or fugacity of the system. Later, also the zeros in the temperature
variable were studied by Fisher [11], which is why these zeros are sometimes also called
Fisher zeros. Both, the field and the temperature zeros, provide valuable information not
only about the phase diagram of the system but also about its characteristic critical behaviour,
see [13] for an overview.

The temperature zeros have been studied extensively for the Potts model on hierarchical
graphs [10, 14, 15]. The main reason was that, for these models, they can be calculated
exactly and show an interesting feature: their distribution forms fractal patterns known as
Julia sets, whereas in the periodic case they are expected to lie on simple curves (or at
least to fill simple regions). For one-dimensional (1D) quasiperiodic structures, however,
self-similar distributions of the magnetic field zeros can be observed. Due to the Lee–
Yang circle theorem they still lie on the unit circle, but only fill a fractal subset of it in
the quasiperiodic case [6, 19]. A similar phenomenon is well known for the spectra of
quasiperiodic Hamiltonians [5] and theoretically understood by means of the gap-labelling
theorem for quasiperiodic Hamilton operators [9]. As we will see, this theoretically
quite interesting property of 1D quasiperiodic Ising models is usually not present in two
dimensions.

The subject of this contribution is the phase transition of 2D quasiperiodic Ising models,
which, from the physical point of view, is certainly much more interesting. We show that
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the location and the properties of the Lee–Yang zeros contain important information that
enables us to confirm the scaling picture for a quasiperiodic Ising model and to provide an
independent method for the determination of the critical exponents of its phase transition.
It will turn out that the critical behaviour of this model cannot be distinguished from that
of a periodic one, as expected from [18].

Since the use of partition function zeros and their distribution might look slightly unusual
for this task, let us add some remarks in favour of it. First, it is a straightforward method
to extract a rather complete picture in one go, namely nature and position of the phase
transition as well as critical exponents. Secondly, the actual numerical estimates are not as
bad as one might expect, although we admit that for each single quantity better methods
exist (some of which will be mentioned). Finally, for the rather specific case of quasicrystals
of high symmetry, the combination with the corner transfer matrix technique enables the
calculation of partition sums for sufficiently large patches.

Let us also add that the following discussion is meant to illustrate this concept and to
convince the reader of its usefulness. All calculations and results shown were obtained with
an average modern workstation—we did not hunt for the maximum accuracy possible.

2. The partition function

Let us consider an Ising model on a finite graph with classical spinsσi = ±1 on each site
i = 1, . . . , N . Restricting ourselves to nearest-neighbour interactions with equal strengthJ

and homogeneous magnetic fieldH , the partition function simply reads:

ZN =
∑

σ1,...,σN=±1

exp

(
− βJ

∑
〈ij〉
(σiσj − 1)− βH

∑
i

(σi − 1)

)
(1)

where 〈ij〉 indicates the summation over all nearest-neighbour pairs in the lattice. We
use the formulation of the Ising model as a Potts-2 model for convenience. An important
observation is that this partition function is essentially a polynomial in the two variables
z = exp(2βJ ) andw = exp(2βH), where we follow Itzykson [14] with this slightly unusual
definition. This convention (where the ferromagnetic regime is 0< Re(z) < 1) turns out
to be more suitable numerically for non-vanishing magnetic fields, where the zero pattern
is no longer invariant underz → 1/z. The analytic structure of the partition function is
completely determined by the distribution of its zeros. As proposed by Lee and Yang, their
investigation in the complex plane provides an approximative approach to quite general,
even quasiperiodic, Ising models. The work to be done essentially splits into two parts:
first one has to exactly calculate the partition function for sufficiently large patches and, as
the second step, the critical behaviour in the thermodynamic limit has to be extrapolated
from their complex zeros.

As a generic example of a 2D Ising model, we have chosen the Ammann–Beenker
tiling [3], with spins on the vertices interacting with each other via the edges of the tiling.
One reason for this choice was that it has only one kind of edges, which suggests taking
equal couplings for all bonds. This means that the quasiperiodic tiling simply defines the
pairs of indices〈ij〉 which appear as neighbours in the summation for the partition function
in equation (1). The second and much more important reason for this choice was that its
octagonal symmetry allows an efficient application of corner transfer matrices (CTMs) [8].
In this tiling, one can find arbitrarily large patches with perfect octagonal symmetry like in
figure 1. This can easily be proved using the substitution rule in figure 2, but it also follows
directly from the standard projection method for this tiling, see [7] for details. The general
definition of CTMs is slightly technical [8], but the idea itself is very simple.
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Figure 1. Octagonal patch of the Ammann–Beenker tiling
and its decomposition into 16 sectors. Each one corresponds
to a corner transfer matrixT or Tt .

Figure 2. Inflation rule for the Ammann–Beenker tiling.
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Figure 3. A small sector defining a 24 × 23 corner transfer matrixTσ0.

As an example, let us consider the small sector in figure 3. We can define a 24×23 matrix
Tσ0(σ1, σ2, σ3, σ4|σ ′1, σ ′2, σ ′3) as the CTM of this sector. Its entries are the partition functions
one obtains by summation over the interior spinsτi for fixed values of the spins on the
edges of the sector. Its indices depend on the values of these spins. The transpositionTtσ0

of
this rectangular matrix is equivalent to a sector with opposite direction. The multiplication
of two CTMs simply corresponds to the combination of the two sectors and the summation
of the new interior spins,

Tσ0Ttσ0
(σ1, σ2, σ3, σ4|σ ′1, σ ′2, σ ′3, σ ′4) =

∑
τ ′1,τ

′
2,τ
′
3=±1

Tσ0(σ1, σ2, σ3, σ4|τ ′1, τ ′2, τ ′3)

×Ttσ0
(τ ′1, τ

′
2, τ
′
3|σ ′1, σ ′2, σ ′3, σ ′4). (2)
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Note that, for equation (2) to be correct, one has to give half weights to all bonds and
magnetic fields on the edges of the sector. Doing this, equation (2) yields the CTM of the
new larger sector.

Up to now, we have kept the centre spinσ0 fixed. To obtain the full partition function
one finally has to sum over its values. For an octagonal patch of the Ammann–Beenker
tiling, it is simply given through the trace of the power of the CTMT for a single sector,

Z(z,w) =
∑
σ0=±1

tr((Tσ0Ttσ0
)8). (3)

This structure of the partition function allows the exact calculation of it, as a polynomial in
z andw, for rather large patches. The major problem one encounters is that its coefficients
get very large, roughly about 1050 for the largest patch with 249 spins we investigated,
and the analysis of its zeros is quite sensitive to numerical errors. Practically, the large
arbitrary precision numbers needed for the computation are the main factor increasing the
computational time and so limiting the size of the patch we could handle numerically on a
normal workstation.

3. Uniqueness and location of the critical point

As mentioned above, the partition functionZ is a polynomial in two variables, the
temperaturez and magnetic fieldw. So, there are two complementary viewpoints. One is to
keep the temperature fixed and look at the complex plane of the magnetic field variable. Let
us begin with the other point of view, that of the zeros in the complex temperature planez

for fixedw. Although, in general, there is no simple theorem for the location of the zeros in
this variable, for regular lattices there are empirically observed regularities. The zeros tend
to accumulate to smooth arcs or at least their distribution in the vicinity of the critical point
may be approximated by distributions on such curves. As, for a finite system, the partition
function is a polynomial with all coefficients positive, the zeros cannot fall onto the real
axis. But because of their connection to the free energyF = − 1

β
lnZ, one encounters a

phase transition where these zeros pinch the positive real axis in the thermodynamic limit.
The first and simplest application of this picture yields the existence and position of a

phase transition point. In figure 4, the zeros ofZ in the temperature plane (in zero magnetic
field, i.e.w = 1) are shown for free and fixed boundary conditions (in the latter case, all
outer spins of our octagonal patch were fixed to the same value,+1 say). Note that the
zero pattern for free boundary conditions is invariant underz → 1/z (because the graph
is bipartite), but the pattern for fixed boundary conditions is not. The distribution of the
temperature zeros supports this picture of a unique phase transition (which is actually a
critical point, see below) for our quasiperiodic model. In table 1, the values of the zeros
closest to the ferromagnetic (Re(z) < 1) critical point for patches with different sizes and
boundary conditions are shown. Unfortunately, these numerical values depend significantly
on the size and boundary conditions, but they still predict, in the ferromagnetic region, a
unique critical pointz∗ in the range of 0.40< z∗ < 0.46. To expand on this, a local circle
fit for case (d) of table 1 givesz∗ ' 0.42(1) andz∗ ' 0.44(3) for free and fixed boundary
conditions, respectively. A finite-size extrapolation from cases (a)–(d) then predicts the
location to bez∗ ' 0.43(2). Although less accurate, this estimate is in good agreement
with the value 0.434(8) extracted from [16] which was obtained by extensive Monte Carlo
simulations.
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Figure 4. Zeros of the partition functionZ in the temperature variablez, with fixed (left) and
free (right) boundary conditions and vanishing magnetic field, for the patch with 249 spins.

Table 1. Partition function zeros located closest to the real axis, in the ferromagnetic region
(0< Re(z) < 1), for vanishing magnetic field.

N Free boundary Fixed boundary

(a) 73 0.3602± 0.1465i 0.4935± 0.1641i
(b) 121 0.3785± 0.1072i 0.4714± 0.1109i
(c) 185 0.3941± 0.0787i 0.4639± 0.0857i
(d) 249 0.4048± 0.0725i 0.4592± 0.0779i

4. Scaling behaviour near the critical point

More interesting than the location of the critical point are the universal scaling properties
of our quasiperiodic model. There are two standard approaches in order to reproduce the
scaling behaviour near the critical point. The first one uses the renormalization group
properties of the model, see [14] for details. We have chosen the other one here, which
relates the critical exponents directly with the distribution of zeros [1, 2], for details of this
approach and complete results for the Ising model on the Ammann–Beenker tiling see [20].
In what follows, we will show that the Lee–Yang picture of the phase transition of our
quasiperiodic Ising model is compatible with that of the Onsager universality class, as is to
be expected from [18].

Let us start with the distribution of zeros in the complex temperature plane for the
vanishing magnetic field. From the assumption that these zeros, at least near the critical
point, lie on a simple curve, one can represent the singularity of the specific heat in terms
of a Cauchy integral which also allows for a treatment by residue calculus. Ifϕ is the slope
of this curve near the critical point andα is the specific heat critical exponent, one finds
[2, 20]

tan[(2− α)ϕ] = cos(πα)− A−/A+
sin(πα)

(4)

whereA± are the amplitudes of the singularity of the specific heat. For the critical exponent
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α = 0 of the Onsager universality class this predicts:A+ = A− andϕ = 90◦. This is in
good agreement with the observed distribution of zeros in figure 4, for a more detailed
discussion and a magnified view, we refer to [20]. An unbiased estimate ofϕ by means
of fitting a tangent to the zeros near the real axis would actually giveϕ = 90◦ with an
uncertainty of less than 2◦.

Some more work has to be done to explain the motion of the temperature zeros in a
magnetic field, but the result is quite simple. The position of the Lee–Yang edge singularity
implies that the trajectories of the temperature zeros as a function of the magnetic field in
the scaling region enclose an angle ofψ = π/2βδ with the x-axis. In figure 5, the motion
of the temperature zeros in a magnetic field is shown. The Onsager valuesβ = 1

8 and
δ = 15 imply an angle of preciselyψ = 48◦ and it shows up clearly in the trajectories
of the zeros near the critical point. Here, precision is even better than before, and a least
squares fit would result inψ = 48◦ with an uncertainty of significantly less than 1◦.

The phase transition and its scaling behaviour also appear in the properties of the
distribution of the magnetic field zeros. The rather general Lee–Yang circle theorem states
that these zeros lie on the unit circle in the complex plane (this is always true in the
thermodynamic limit but also for finite patches with free boundary conditions). Figure 6
shows these zeros for different temperaturesz. For our 2D model, the distribution of the
magnetic field zeros is remarkably regular. This is in contrast to 1D quasiperiodic Ising
models where one observes a fractal distribution of the magnetic field zeros, as mentioned
in the introduction. The only gap remaining is the physically important Lee–Yang gap in
the distribution of the magnetic field zeros nearw = 1 corresponding to zero magnetic
field. Below the critical point, the magnetization of a ferromagnetic Ising model, which is
continuous at high temperatures, becomes discontinuous atH = 0. This implies that the
Lee–Yang gap in the distribution of the zeros for largez closes at the critical point.

The details of the magnetic field zeros also contain some information about the critical
exponentδ. At the critical point, their distribution must reproduce the magnetization
m ∼ H 1/δ. Again, expressing the magnetization as a Cauchy integral on the unit circle
in the complex magnetic field variable, in order to reproduce this magnetization, the density
of zeros has to be proportional toϕ1/δ, whereϕ = ln(w) is the angle ofw on the unit circle.
Labelling the zeros consecutively with respect to this angle, this distribution yields

ϕj ∝ j δ/(δ+1) ⇒ j−δ/(δ+1)ϕj = constant forT = Tc. (5)

In figure 7(a), the values of the first nine zeros are plotted as a function of the temperature
z. In figure 7(b), these zeros have been rescaled according to equation (5), with the Onsager
value δ = 15. As expected for an Onsager phase transition, the curves have a common
intersection at the critical pointz ' 0.43. Admittedly, as the rescaling valueδ/(δ + 1)
depends just weekly onδ, this does not allow for an independent calculation ofδ, but it is
an important consistency check and shows that the scaling properties of our quasiperiodic
model cannot be distinguished from the periodic case.

5. Conclusions

The partition function zeros for the Ising model on the Ammann–Beenker tiling do not lie
on simple curves in the complex temperature plane. But the unique ferromagnetic phase
transition of our quasiperiodic model clearly shows up where these zeros pinch the real axis,
in agreement with detailed Monte Carlo simulations, compare with [16] and appendix B of
[20] for details. The qualitative behaviour, for a closely related model, can be substantiated
by a renormalization group approach [20, 21] which further supports Luck’s conjectures.
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Figure 5. (a) Motion of the temperature (z) zeros in a magnetic field.H runs from 0 to 1.5 by
equal steps. (b) An enlargement of the ferromagnetic region.

In contrast to the 1D quasiperiodic Ising model, we did not observe any apparent gap
structure for the magnetic field zeros, except the physically important Lee–Yang gap. By
means of the corner transfer matrix technique it was possible to investigate the scaling of
the Lee–Yang zeros. The properties of the temperature as well as the magnetic field zeros
in the scaling region of the ferromagnetic phase transition turned out to be in fair agreement
with the critical exponents of the Onsager universality class. Our results presented here,
together with those of the renormalization approach mentioned above, therefore support the
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Figure 6. Distribution of the magnetic field (w) zeros for different temperatures (z), from the
left: above, at and below the critical point.

0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

z

ϕj

0.4 0.6 0.8
0

0.1

z

j −δ/(δ+1)ϕj

Figure 7. (a) The phasesϕ = arg(w) of the first nine zeros as a function of the temperature
(z). The chain curve indicates the expected behaviour of the Lee–Yang gapθc ∝ (z − z∗)βδ .
(b) The scaling of these zeros for the Onsager valueδ = 15. Rescaled byj−δ/(δ+1), the curves
have a common intersection at the critical pointz∗ ' 0.43.

common belief (compare with [18] for details) that the universal critical behaviour of a 2D
quasiperiodic Ising model cannot be distinguished from that of the periodic case.
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